翻訳と辞書
Words near each other
・ Fast wavelet transform
・ Fast Web Media
・ Fast wia im richtigen Leben
・ Fast Workers
・ Fast Yellow AB
・ FAST – Fighting Antisemitism Together
・ Fast, Cheap & Out of Control
・ Fast, Cheap and Out of Control (album)
・ Fast-a-Thon
・ Fast-growing hierarchy
・ Fast-man
・ Fast-men
・ Fast-moving consumer goods
・ Fast-neutron reactor
・ Fast-roping
Fast-scan cyclic voltammetry
・ Fast-teks
・ Fast-track construction
・ Fast-track voluntary arrangement
・ Fast-Walking
・ Fast4 Tennis
・ Fast5
・ Fast5 Netball World Series
・ FASTA
・ Fasta (Frisian)
・ FASTA format
・ Fasta Åland
・ Fastachee
・ FASTag
・ Fastaq


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fast-scan cyclic voltammetry : ウィキペディア英語版
Fast-scan cyclic voltammetry
Fast-scan cyclic voltammetry (FSCV) is cyclic voltammetry with a very high scan rate (up to ). Application of high scan rate allows rapid acquisition of a voltammogram within several milliseconds and ensures high temporal resolution of this electroanalytical technique. An acquisition rate of 10 Hz is routinely employed.
FSCV in combination with carbon-fiber microelectrodes became a very popular method for detection of neurotransmitters, hormones and metabolites in biological systems.〔
〕 Initially, FSCV was successfully used for detection of electrochemically active biogenic amines release in chromaffin cells (adrenaline and noradrenaline), brain slices (5-HT, dopamine, norepinephrine) and in vivo in anesthetized or awake and behaving animals (dopamine). Further refinements of the method have enabled detection of 5-HT, norepinephrine, adenosine, oxygen, pH changes in vivo in rats and mice as well as measurement of dopamine and serotonin concentration in fruit flies.
== Principles of FSCV ==

In fast-scan cyclic voltammetry (FSCV), a small carbon fiber electrode (micrometer scale) is inserted into living cells, tissue, or extracellular space.〔 The electrode is then used to quickly raise and lower the voltage in a triangular wave fashion. When the voltage is in the correct range (typically ±1 Volt) the compound of interest will be repeatedly oxidized and reduced.〔 This will result in a movement of electrons in solution that will ultimately create a small alternating current (nano amps scale).〔 By subtracting the background current created by the probe from the resulting current, it is possible to generate a voltage vs. current plot that is unique to each compound.〔 Since the time scale of the voltage oscillations is known, this can then be used to calculate a plot of the current in solution as a function of time. The relative concentrations of the compound may be calculated as long as the number of electrons transferred in each oxidation and reduction reaction is known.〔
Advantages such as chemical specificity, high resolution, and noninvasive probes make FSCV a powerful technique for detecting changing chemical concentrations in vivo.〔 The chemical specificity of FSCV is derived from reduction potentials. Every compound has a unique reduction potential, and so the alternating voltage can be set to select for a particular compound.〔 As a result, FSCV can be used to measure a variety of electrically active biological compounds such as catacholamines, indolamines, and neurotransmitters.〔 Concentration changes regarding ascorbic acid, oxygen, nitric oxide, and hydrogen ions (pH) can also be detected.〔 It can even be used to measure multiple compounds at the same time, as long as one has a positive and the other has a negative redox potential.〔 High resolution is achieved by changing the voltage at very high speeds, referred to as a fast scan rate. Scan rates for FSCV are on the sub-second scale, oxidizing and reducing compounds in microseconds. Another advantage of FSCV is its ability to be used in vivo. Typical electrodes consist of small carbon fiber needles that are micrometers in diameter and able to be noninvasively inserted into live tissues.〔 The size of the electrode also permits it to probe very specific brain regions. Thus, FSCV has proved to be effective in measuring chemical fluctuations of living organisms and has been used in conjunction with several behavioral studies.
Acceptable voltage and current ranges are common limitations of FSCV. To start, the electric potential must stay within the voltage range of the electrolysis of water (Eo = ± 1.23).〔 Additionally, the resulting current must remain low in order to avoid cell lysis as well as cell depolarization.〔 Fast scan cyclic voltammetry is also limited in that it only makes differential measurements; the currents it measures are only relative to the background, so they cannot be used to quantify resting concentrations.〔 This is partially due to the fact that the basal current levels are largely effected by factors such as pH, so over longer periods of time these values tend to drift. The age of the electrode is also important, and probes tend to be less accurate the longer they are used. In order to expand the temporal resolution of this technique, future improvements will need to be made to the microelectrodes. However, for the time being FSCV remains effective in measuring short term changes in concentration.
This technique is also limited to quantifying the concentrations of electrically active compounds, and can only be used with select molecules in biological systems. In spite of this, there have been methods developed to measure levels of non-electric enzymes that have an electroactive substrate.〔 However in this scenario, the electrode probes are also a limiting factor in the data resolution. When measuring an electroactive substrate, the probe is often coated with its corresponding enzyme. In order to avoid the enzyme interacting with different substrates, the electrode is also coated with a polymer that acts as a selective filter against particular types of ions.〔 However, when this polymer is added it lowers the speed at which the voltage scans can be made and effectively lowers the data resolution.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fast-scan cyclic voltammetry」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.